Solving the Poisson problem with different preconditioning strategies

In this tutorial, we explore using PETSc KSP as an out-of-the-box solver inside NGSolve. We will focus our attention on the Poisson problem, and we will consider different solvers and preconditioning strategies. In particular, we will show how to use MUMPS as a direct solver, and the use of an incomplete LU factorisation, an algebraic multigrid cycle, and a balancing domain decomposition by constraints (BDDC) approach as preconditioners. We begin considering the Poisson problem on the unit square with Dirichlet boundary conditions on all sides and a right-hand side function \(f(x,y) = 32(x(1-x)y(1-y))\), i.e.

\[\text{find } u\in H^1_0(\Omega) \text{ s.t. } a(u,v) := \int_{\Omega} \nabla u\cdot \nabla v \; d\vec{x} = L(v) := \int_{\Omega} fv\; d\vec{x}\qquad v\in H^1_0(\Omega).\]

Such a discretisation can easily be constructed using NGSolve as follows:

from ngsolve import *
import netgen.gui
import netgen.meshing as ngm
from mpi4py.MPI import COMM_WORLD

if COMM_WORLD.rank == 0:
    ngmesh = unit_square.GenerateMesh(maxh=0.1)
    for _ in range(4):
        ngmesh.Refine()
    mesh = Mesh(ngmesh.Distribute(COMM_WORLD))
else:
    mesh = Mesh(ngm.Mesh.Receive(COMM_WORLD))
order = 2
fes = H1(mesh, order=order, dirichlet="left|right|top|bottom")
print("Number of degrees of freedom: ", fes.ndof)
u,v = fes.TnT()
a = BilinearForm(grad(u)*grad(v)*dx)
f = LinearForm(fes)
f += 32 * (y*(1-y)+x*(1-x)) * v * dx
a.Assemble()
f.Assemble()

Now that we have a discretisation of the problem, we use ngsPETSc KrylovSolver to solve the linear system. The KrylovSolver class wraps the PETSc KSP object. We begin showing how to use an LU factorisation as a direct solver, in particular, we use MUMPS to perform the factorisation in parallel. Let us discuss the solver options: the flag "ksp_type" set to "preonly" means that no Krylov method is employed, the flag "pc_type" indicates that we use a direct LU factorisation, while "pc_factor_mat_solver_type" selects the use of MUMPS to perform the LU factorisation.

from ngsPETSc import KrylovSolver
solver = KrylovSolver(a, fes.FreeDofs(),
                      solverParameters={"ksp_type": "preonly",
                                        "pc_type": "lu",
                                        "pc_factor_mat_solver_type": "mumps"})
gfu = GridFunction(fes)
solver.solve(f.vec, gfu.vec)
exact = 16*x*(1-x)*y*(1-y)
print ("LU L2-error:", sqrt (Integrate ( (gfu-exact)*(gfu-exact), mesh)))
Draw(gfu)

We can also use an iterative solver with an incomplete LU factorisation as a preconditioner. We switch to an iterative solver, setting "ksp_type" to "cg", while we use an incomplete LU factorisation as preconditioner by changing the flag "pc_type". We have also added the flag "ksp_monitor" to view how the residual evolves at each linear iteration.

if COMM_WORLD.Get_size() == 1:
  solver = KrylovSolver(a, fes.FreeDofs(),
                        solverParameters={"ksp_type": "cg",
                                          "ksp_monitor": "",
                                          "pc_type": "ilu",
                                          "pc_factor_mat_solver_type": "petsc"})
  gfu = GridFunction(fes)
  solver.solve(f.vec, gfu.vec)
  print ("ILU L2-error:", sqrt (Integrate ( (gfu-exact)*(gfu-exact), mesh)))
  Draw(gfu)
else:
  print("ILU preconditioner is not available in parallel")
Preconditioner performance

Preconditioner

Iterations

PETSc ILU

166

We can also use an algebraic multigrid preconditioner. In particular, we will use PETSc’s own implementation of AMG, GAMG. We do this changing the flag "pc_type" to "gamg"

solver = KrylovSolver(a, fes.FreeDofs(),
                      solverParameters={"ksp_type": "cg",
                                        "ksp_monitor": "",
                                        "pc_type": "gamg"})
gfu = GridFunction(fes)
solver.solve(f.vec, gfu.vec)
print ("GAMG L2-error:", sqrt (Integrate ( (gfu-exact)*(gfu-exact), mesh)))
Draw(gfu)
Preconditioner performance

Preconditioner

Iterations

PETSc ILU

166

PETSc GAMG

35

We can also use the PETSc BDDC preconditioner. Once again we will select this option via the flag "pc_type" flag.

solver = KrylovSolver(a, fes.FreeDofs(),
                      solverParameters={"ksp_type": "cg",
                                        "ksp_monitor": "",
                                        "pc_type": "bddc",
                                        "ngs_mat_type": "is"})
gfu = GridFunction(fes)
solver.solve(f.vec, gfu.vec)
print ("BDDC L2-error:", sqrt (Integrate ( (gfu-exact)*(gfu-exact), mesh)))
Draw(gfu)
Preconditioner performance

Preconditioner

Iterations

PETSc ILU

166

PETSc GAMG

35

PETSc BDDC (N=2)

5

PETSc BDDC (N=4)

7

PETSc BDDC (N=6)

9

We can see that for an increasing number of subdomains \(N\) the number of iterations also increases. Notice that in all the cases we have considered, the KrylovSolver class creates a PETSc matrix from the NGSolve matrix in order to assemble the required preconditioners. If we have already some knowledge of the preconditioner we want to use, we can use the KrylovSolver class in a matrix-free fashion. This will result in a faster setup time and less memory usage. We will now use the KrylovSolver class in a matrix-free fashion with the element-wise BDDC preconditioner implemented in NGSolve.

a = BilinearForm(grad(u)*grad(v)*dx)
el_bddc = Preconditioner(a, "bddc")
a.Assemble()
solver = KrylovSolver(a.mat, fes.FreeDofs(), p=el_bddc.mat,
                      solverParameters={"ksp_type": "cg",
                                        "ksp_monitor": "",
                                        "pc_type": "mat",
                                        "ngs_mat_type": "python",
                                        "ksp_rtol": 1e-10})
gfu = GridFunction(fes)
solver.solve(f.vec, gfu.vec)
print ("Element-wise BDDC L2-error:", sqrt (Integrate ( (gfu-exact)*(gfu-exact), mesh)))
Draw(gfu)
Preconditioner performance

Preconditioner

Iterations

PETSc ILU

166

PETSc GAMG

35

PETSc BDDC (N=2)

5

PETSc BDDC (N=4)

7

PETSc BDDC (N=6)

9

Element-wise BDDC

14